Under review as a conference paper at ICLR 2025

QUANTILE ACTIVATION: CORRECTING A FAILURE
MODE OF ML MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

An established failure mode for machine learning models occurs when the same
features are equally likely to belong to class 0 and class 1. In such cases, existing
ML models cannot correctly classify the sample. However, a solvable case emerges
when the probabilities of class 0 and 1 vary with the context distribution. To the
best of our knowledge, standard neural network architectures like MLPs or CNNs
are not equipped to handle this.

In this article, we propose a simple activation function, quantile activation (QACT),
that addresses this problem without significantly increasing computational costs.
The core idea is to “adapt” the outputs of each neuron to its context distribution.
The proposed quantile activation, QACT, produces the relative quantile of the
sample in its context distribution, rather than the actual values, as in traditional
networks.

A practical example where the same sample can have different labels arises in
cases of inherent distribution shift. We validate the proposed activation func-
tion under such shifts, using datasets designed to test robustness against distor-
tions—CIFAR10C, CIFAR100C, MNISTC, TinyImagenetC. Our results demon-
strate significantly better generalization across distortions compared to conventional
classifiers, across various architectures. Although this paper presents a proof of
concept, we find that this approach unexpectedly outperforms DINOv2 (small)
under large distortions, despite DINOv2 being trained with a much larger network
and dataset.

1 INTRODUCTION

Thanks to deep learning approaches, machine learning has been adopted across wide variety of
domains. However, there is a significant failure mode within the standard framework of machine
learning — A specific sample can potentially be labelled 0 or 1 depending on the context. Hence,
standard ML models cannot handle these conflicts effectively.

A simple toy example to illustrate the failure mode of ML systems: We use a simple toy example
to describe this failure mode. Consider the distribution generated as follows (figure [Tal):

py ~ U(ST) random sample from uniform distribution on the circle

e = R(30°) 1 L2 is obtained by rotating 1 by 30°

1
Class 0 ~ N (p1,0.11) Class 0 generated using normal with mean y; and stdev 0.1)

Class 1 ~ N (p2,0.11) Class 1 generated using normal with mean y5 and stdev 0.1

Why is this classification problem hard? Note that any point from the support of the above
distribution is equally likely to be class O or class 1. So, one cannot construct any fixed function
depending only on the input features x. Thus, most of existing ML frameworks, which insist on
learning a fixed function, fail. Nevertheless, this is a valid distribution where classification with
accuracy 1 is theoretically possible when one can reconstruct the latent puq, jo.

Specifically, the current neural network architectures fail as well. Consider training a simple MLP on
this dataset using gradient descent. That is, each batch (of size B) of samples is generated as - Sample
11, i2, then sample B/2 points each from N (1, 0.11) and NV (uz,0.11) respectively. Since, we

Under review as a conference paper at ICLR 2025

Kernel Density Estimate of Accuracy for Quantile and ReLU Activations

3 Quantile Activation ,
) ReLU Activation I

(a) (b)

Figure 1: A simple toy example to illustrate where ML systems fail. (a) The distribution is a mixture
of Gaussian distributions whose centers (y1, 12) are separated by 30°. The centres themselves can lie
anywhere on the unit circle. (please refer to the text for exact description). (b) Histogram of accuracy
over 1000 different combinations of 111, o for both ReLLU activation and after incorporating QACT.
Clearly, ReLU activation alone cannot perform better than random guess. Incorporating QACT on
the other hand can easily infer the latent 11, po.

would have that a specific sample is equally likely to belong class 0 or 1, one would learn (probability)
p = 0.5 for all the samples. This is verified in figure [Tb] where we use ReLU activation.

Remark: We remark that the failure mode described above is one of the possible failure modes, but
there can exist other failure modes as well. In this article, we are interested in rectifying the above
failure mode alone.

Fixing the failure mode and defining the ‘“‘context’: The only way to fix the above failure
mode is to infer the p1, o from the batch of samples. We define context as the batch of samples
according to which each sample is processed. To our knowledge current neural network architectures
such as MLP/CNN do not consider this. While transformers considers this to some extent via the
self-attention module, it is still sample specific and is very expensive computationally to obtain
self-attention for the entire batch. Moreover, vision transformers do not consider attention across
different samples in the batch.

Quantile Activation can identify the context distribution from each batch: To rectify this
shortcoming, we propose quantile activation, QACT, in this article. The key idea is that — at each
neuron, the final activation value depends on the activations of the entire batch of samples. Specifically,
we use the relative quantile of the pre-activation |I| with respect to other pre-activations in the batch.
(Details in section [2)). Figure[Tb|shows that this simple change can allow the neural network to learn
in spite of the contradictory labels.

Distribution Shift as a failure mode: The inability of current network architectures to handle
distribution shift is a manifestation of the failure mode discussed above. For instance consider the
above distribution (figure[Ta)), where, if the pair of Gaussian distributions are rotated by 30° (a.k.a
distribution shift), the class 0 and class 1 overlap. We validate the proposed quantile activation on the
standard distribution shift dataset - CIFAR10C. Figure [2]illustrates the results obtained using ReLU
activations and QACT. As severity increases (w.r.t Gaussian Noise), we observe that ReLU activation
loses the class structure. On the other hand, the proposed QACT framework does not suffer from this
and the class structure is preserved with QACT.

Remark 1: Although QACT deals with activation of neurons, it is fundamentally different compared
to the usual activation functions such as ReLU/Gelu etc. QACT is designed for classification tasks

'We use the following convention — “Pre-activations” denote the inputs to the activation functions and
“Activations” denote the outputs of the activation function.

Under review as a conference paper at ICLR 2025

Severity 0 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
=
Q
<
o
Accuracy
j=)
|
Q
e~
Accuracy 90.48 81.06 65.9 48.34 41.54 35.86

Figure 2: Comparing TSNE plots of QACT and ReLU activation on CIFAR10C with Gaussian
distortions. Observe that QACT maintains the class structure extremely well across distortions, while
the usual ReLLU activations loses the class structure as severity increases.

where context plays an important role and hence considering “pure” classification tasks (i.e where the
underlying distribution and ground-truth are unknown but fixed) is out of scope in this article.

Remark 2: Quantile activation is different from existing quantile neural network based approaches,
such as regression (Prashanth et al.,|2022)), binary quantile classification (Tambwekar et al.,[2022)),
Anomaly Detection (Li & van Leeuwen, 2023} |Seo et al., [2022). Our approach is achieving best in-
class performance by incorporating context distribution in the classification paradigm. Our approach
is also markedly different from Machine unlearning which is based on selective forgetting of certain
data points or retraining from scratch (Seetha et al., [2024).

Contributions: A decent amount of literature on neuronal activation is available. However, to the
best of our knowledge, none matches the central idea proposed in this work.

In (Challa et al | [2023)), the authors propose an approach to calibrate a pre-trained classifier fo(x) by
extending it to learn a quantile function, Q(x, 0, 7) (7 denotes the quantile), and then estimate the
probabilities using [I[Q(x,0,7) > 0.5]d7¢} They show that this results in probabilities which are
robust to distortions.

1. In this article, we extend this approach to the level of a neuron, by suitably deriving the
forward and backward propagation equations required for learning (section [2)).

2. We then show that a suitable incorporation of our extension produces context dependent
outputs at the level of each neuron of the neural network.

3. Our approach contributes to achieving better generalization across distributions and is
more robust to distortions, across architectures. We evaluate our method using different
architectures and datasets, and compare with the current state-of-the-art — DINOv2. We
show that QACT proposed here is more robust to distortions than DINOv2, even if we
have considerably less number of parameters (22M for DINOv2 vs 11M for Resnet18).
Additionally, DINOv2 is trained on 20 odd datasets, before being applied on CIFAR10C; in
contrast, our framework is trained on CIFAR10, and produces more robust outcome (see
figures [4][6).

4. We also adapt QACT to design a classifier which returns better calibrated probabilities.
We show that, unlike the relevant, most recent baselines (RELU, DINOv2 (small)), QACT
achieves constant calibration error across different severity of distortions.

Related Works: This work aims to address the failure mode described earlier. To the best of our
knowledge, no existing literature specifically addresses this issue. However, we believe this issue to
be widely persistent in several practical domains. We use distribution shift to validate the proposed
approach, which is part of a bigger problem of domain generalization.

Related Works on Domain Generalization (DG): The problem of domain generalization tries to
answer the question — Can we use a classifier trained on one domain across several other related

2I[] denotes the indicator function

Under review as a conference paper at ICLR 2025

domains? The earliest known approach for this is Transfer Learning (Pan & Yang| 2010; Zhuang
et al., | 2021)), where a classifier from a single domain is applied to a different domain with/without
fine-tuning. Several approaches have been proposed to achieve DG, such as extracting domain-
invariant features over single/multiple source domains (Ghifary et al.||2015; |/Akuzawa et al., 2019
Dou et al.| 2019; Piratla et al., [2020; Hu et al., [2019), Meta Learning (Huang et al., [2020; Dou
et al.} 2019), Invariant Risk Minimization (Arjovsky et al.;|2019). Self-supervised learning is another
proposed approach which tries to extract features on large scale datasets in an unsupervised manner,
the most recent among them being DINOv2 (Oquab et al.,[2023) which is the current state—of—the—artﬂ
Very large foundation models, such as GPT-4V, are also known to perform better with respect to
distribution shifts (Han et al.,[2023). Nevertheless, to the best of our knowledge, none of these models
incorporates context distributions for classification.

2 QUANTILE ACTIVATION

Rethinking Outputs from a Neuron: To recall — if x denotes the input, a typical neuron does the
following — (i) Applies a linear transformation with parameters w, b, giving wx 4 b as the output,
and (ii) applies a rectifier g, returning g(w'x + b). Typically, g is taken to be the ReLU activation -
gretu(x) = max(0, z). Intuitively, we expect that each neuron captures an “abstract” feature, usually
not understood by a human observer.

An alternate way to model a neuron is to consider it as predicting a latent variable y, where y = 1
if the feature is present and y = 0 if the feature is absent. Mathematically, we have the following
model:

z=w'x+b+e and y=1Iz>0])

This is very similar to the standard latent variable model for logistic regression, with the main
exception being, the outputs y are not known for each neuron beforehand. If y is known, it is rather
easy to obtain the probabilities — P(z > 0). Can we still predict the probabilities, even when y itself
is a latent variable?

The authors in (Challa et al., [2023)) propose the following algorithm to estimate the probabilities:

1. Let {«;} denote the set of input samples from the input distribution x and {z;} denote their
corresponding latent outputs, which would be from the distribution z

2. Assigny = 1 whenever z > (1 — 7)*" quantile of z, and 0 otherwise. For a specific sample,
we have y; = 1if z; > (1 — 7)'" quantile of {z;}

3. Fit the model Q(z, 7; 0) to the dataset {((x;,T),y;)}, and estimate the probability as,

1
Py, =1) = / I[Q(z,7;6) > 0.5]dr 3)

=0

The key idea: Observe that in step 2., the labelling is done without resorting to actual ground-
truth labels. This allows us to obtain the probabilities on the fly for any set of parameters, only by
considering the quantiles of z.

Defining the Quantile Activation QACT Let z denote the pre-activation of the neuron, and let
{z;} denote the samples from this distribution. Let F, denote the cumulative distribution function
(CDF), and let f, denote the density of the distribution. Accordingly, we have that F,"!(7) denotes
the 7t" quantile of z. Using step (2) of the algorithm above, we define,

1

) 1
QACT(z) = / Iz > F Y (1 = 7))dr S / Iz > F7 Y (7)]dr 4)
7=0

=0 T—(1-7)

Computing the gradient of QACT: However, to use QACT in a neural network, we need to
compute the gradient which is required for back-propagation. Let 7, denote the quantile at which

F,1(7.) = 2. Then we have that QACT(z) = 7, since F, !(7) is an increasing function. So, we

3as perhttps://paperswithcode.com/sota/domain-generalization-on-imagenet-c
accessed on 26 September 2024

https://paperswithcode.com/sota/domain-generalization-on-imagenet-c

Under review as a conference paper at ICLR 2025

Algorithm 1 Forward Propagation for a single neuron

Input: [z;] a vector of pre-activations, 0 < 7y < 75 < --+ < 7,,_ < 1 - alist of quantile indices at
which we compute the quantiles.
Append two large values, ¢ and —c, to the vector [z;].
Count n4 = number of positive values, n_ = number of negative values, and assign the weight
w4 = 1/n4 to the positive values, and w_ = 1/n_ to the negative values.
Compute weighted quantiles {q;} at each of {7;} over the set {z;} U {¢, —c}
Compute QACT(z;) using the function,

QACt(zs) = == 3" Ilo > g ©

Remember [z;], w4, w_, [QACT(z;)] for backward propagation.
return [QACT(z;)]

Algorithm 2 Backward Propagation for a single neuron

Input: grad_output,0 <7 <1 < -+ < T, < 1-alistof quantile indices at which we
compute the quantiles.
Context from Forward Propagation: [z;], wi,w_, [QACT(z;)]

Obtain a weighted sample from [z;] with weights w,w_ — (say) S.

Obtain a kernel density estimate, using points from S, at each of the points in z; — (say) fz(zl)
Set,

grad_input = grad_output © [f;(2;)] @)

return grad_input

have that QACT(F, (7)) = 7. In other words, we have that QACT(z) is F}(z), which is nothing
but the CDF of z. Hence, we have,

0z
where f,(z) denotes the density of the distribution.

= fu(2) &)

Grounding the Neurons: With the above formulation, observe that since QACT is identical to
CDF, it follows that, QACT(z) is always a uniform distribution between 0 and 1, irrespective of the
distribution z. When training numerous neurons in a layer, this could cause all the neurons to learn
the same behaviour. Specifically, if, half the time, a particular abstract feature is more prevalent
than others, QACT (as presented above) would not be able to learn this feature. To correct this, we
enforce that positive values and negative values have equal weight. Given the input distribution z,
We perform the following transformation before applying QACT. Let

— z ifz>0 — z ifz<0 @)
10 otherwise 10 otherwise

denote the truncated distributions. Then,

4 {z+ with probability 0.5

9
z~ with probability 0.5 ©)

From definition of z*', we get that the median of z* is 0. This grounds the input distribution to have
the same positive and negative weight.

Dealing with corner cases: It is possible that during training, some neurons either only get positive
values or only get negative values. However, for smooth outputs, one should still only give the weight
of 0.5 for positive values. To handle this, we include two values c (large positive) and —c (large
negative) for each neuron. Since, the quantiles are conventionally computed using linear interpolation,
this allows the outputs to vary smoothly. We take ¢ = 100 in this article.

Under review as a conference paper at ICLR 2025

2 Dataset
o original

— original
* rotated

rotated

Count.

() (b) (@

Figure 3: Intuition behind quantile activation. (a) shows a simple toy distribution of points (blue), it’s
distortion (orange) and a simple line (red) on which the samples are projected to obtain activations.
(b) shows the distribution of the pre-activations. (c) shows the distributions of the activations with
QACT of the original distribution (blue). (d) shows the distributions of the activations with QACT
under the distorted distribution (orange). Observe that the distributions match perfectly under small
distortions. Note that even if the distribution matches perfectly, the quantile activation is actually a
deterministic function.

Estimating the Density for Back-Propagation: Note that the gradient for the back propagation is
given by the density of z* (weighted distribution). We use the Kernel Density Estimation (KDE), to
estimate the density. We, (i) First sample .S points with weights w,w_, and (ii) then estimate the
density at all the input points [z;]. This is point-wise multiplied with the backward gradient to get the
gradient for the input. In this article we use S = 1000, which we observe gets reasonable estimates.

Computational Complexity: Computational Complexity (for a single neuron) is majorly decided
by 2 functions — (i) Computing the quantiles has the complexity for a vector [z;] of size n can be
performed in O(nlog(n)). Since this is log-linear in n, it does not increase the complexity drastically
compared to other operations in a deep neural network. (ii) Computational complexity of the KDE
estimates is O(Sn.) where S is the size of sample (weighted sample from [z;]) and 7., is the number
of quantiles, giving a total of O(nlog(n) + Sn.). In practice, we consider S = 1000 and n, = 100
which works well, and hence does not increase with the batch size.

Remark: Algorithms [I] and [2] provide the pseudocode for the quantile activation. For stable
training, in practice, we prepend and append the quantile activation with BatchNorm layers.

Why QACT is robust to distortions? To understand the idea behind quantile activation, consider a
simple toy example in figure[3] For ease of visualization, assume that the input features (blue) are in 2
dimensions, and also assume that the line of the linear projection is given by the red line in figure [3a]
Now, assume that the blue input features are rotated, leading to a different distribution (indicated here
by orange). Since activations are essentially (unnormalized) signed distances from the line, we plot
the histograms corresponding to the two distributions in figure[3b] As expected, these distributions
are different. However, after performing the quantile activation in equation] we have that both are
uniform distribution. This is illustrated in figures[3c|and[3d] This behaviour has a normalizing effect
across different distributions, and hence has better distribution generalization than other activations.

3 TRAINING WITH QACT

In the previous section, we described the procedure to adapt a single neuron to its context distribution.
In this section we discuss how this extends to the Dense/Convolution layers, the loss functions to
train the network and the inference aspect.

Under review as a conference paper at ICLR 2025

Extending to standard layers: The extension of equation 4{to dense outputs is straightforward.
A typical output of the dense layer would be of the shape (B, N..) - B denotes the batch size, N,
denotes the width of the network. The principle is - The context distribution of a neuron is all the
values which are obtained using the same parameters. In this case, each of the values across the ‘B’
dimension are considered to be samples from the context distribution.

For a convolution layer, the typical outputs are of the form - (B, N., H, W) - B denotes the size of
the batch, N, denotes the number of channels, H, W denotes the sizes of the images. In this case we
should consider all values across the 1st,3rd and 4th dimension to be from the context distribution,
since all these values are obtained using the same parameters. So, the number of samples would be
BxHxW.

Loss Functions: One can use any differentiable loss function to train with quantile activation.
We specifically experiment with the standard Cross-Entropy Loss, Triplet Loss, and the recently
proposed Watershed Loss in (Challa et al.,[2024) (see section . However, if one requires that the
boundaries between classes adapt to the distribution, then learning similarities instead of boundaries
can be beneficial. Both Triplet Loss and Watershed Loss fall into this category. We see that learning
similarities does have slight benefits when considering the embedding quality.

Inference with QACT: As stated before, we want to assign a label for classification based on the
context of the sample. There exist two approaches for this — (1) One way is to keep track of the
quantiles and the estimated densities for all neurons and use it for inference. This allows inference
for a single sample in the traditional sense. However, this also implies that one would not be able
to assign classes based on the context at evaluation. (2) Another way is to make sure that, even for
inference on a single sample, we include several samples from the context distribution, but only use
the output for a specific sample. This allows one to assign classes based on the context. In this article,
we follow the latter approach.

Quantile Classifier: Observe that the proposed QACT (without normalization) returns the values in
[0, 1] which can be interpreted as probabilities. Hence, one can also use this for the classification layer.
Nonetheless, two changes are required — (i) Traditional softmax used in conjunction with negative-
log-likelihood loss already considers “relative” activations of the classification in normalization.
However, QACT does not. Hence, one should use Binary-Cross-Entropy loss with QACT, which
amounts to one-vs-rest classification. (ii) Also, unlike a neuron in the middle layers, the bias of the
neuron in the classification layer depends on the class imbalance. For instance, with 10 classes, one
would have only 1/10 of the samples labelled 1 and 9/10 of the samples labelled 0. To address this,
we require that the median of the outputs be at 0.9, and hence weight the positive class with 0.9 and
the negative class with 0.1 respectively. In this article, whenever QACT is used, we use this approach
for inference.

We observe that (figures [T4] and [I3) using quantile classifier on the learned features in general
improves the consistency of the calibration error and also leads to the reducing the calibration error.
In this article, for all networks trained with quantile activation, we use quantile classifier to compute
the accuracy/calibration errors.

4 EVALUATION

To summarize, we make the following changes to the existing classification pipeline — (i) Replace
the usual ReL.U activation with QACT and (ii) Use triplet or watershed loss instead of standard
cross-entropy loss. We expect this framework to learn context dependent features, and hence be
robust to distortions. (iii) Also, use quantile classifier to train the classifier on the embedding for
better calibrated probabilities.

Evaluation Protocol: To evaluate our approach, we consider the datasets developed for this
purpose — CIFAR10C, CIFAR100C, TinyImagenetC (Hendrycks & Dietterichl 2019), MNISTC
(Mu & Gilmerl 2019). These datasets have a set of 15 distortions at 5 severity levels. To ensure
diversity we evaluate our method on 4 architectures — (overparametrized) LeNet, ResNet18 (He et al.|
2016) (11M parameters), VGG (Simonyan & Zisserman) [2015)(15M parameters) and DenseNet

Under review as a conference paper at ICLR 2025

Method 1
—8- FResnet18-RelU
DenseNet-RelLU
== Resnet18-Quant
0.25 DenseNet-Quant ta
=&~ Dinov2(s) 7

0.30

0.20

0.15

calib Error(Top-Label)

g o7
g
<
06 Method o
8- Resnet18-RellU

DenseNet-ReLU 010
0.5 =M= Resnet18-Quant
DenseNet-Quant

=@ DinoV2(s) 0.05

1 2 3 4 5 1 2 3 4 s
Severity Severity

(a) Accuracy (b) Top-Label Calibration Error

Figure 4: Comparing QACT with ReLLU activation and DINOv2 (small) on CIFAR10C. We observe
that, while at low severity of distortions QACT has a similar accuracy as existing pipelines, at
higher levels the drop in accuracy is substantially smaller than existing approaches. With respect to
calibration, we observe that the calibration error remains constant (up to standard deviations) across
distortions.

(Huang et al.,|2017)) (1M parameters). The code to reproduce the results can be found at https:
//anonymous.4open.science/r/QuantAct-534C.

Baselines for Comparison: To our knowledge, there exists no other framework which proposes
classification based on context distribution. So, for comparison, we consider standard ReLLU acti-
vation (Fukushimal |1970), pReLU (He et al.,|2015)), and SELU (Klambauer et al.,[2017) for all the
architectures stated above. Also, we compare our results with DINOv2 (small) (Oquab et al.l 2023)
(22M parameters) which is current state-of-the-art for domain generalization. Note that for DINOv2,
architecture and datasets used for training are substantially different (and substantially larger) from
what we consider in this article. Nevertheless, we include the results for understanding where our
proposed approach lies on the spectrum. We consider the small version of DINOv2 to match the
number of parameters with the compared models.

Metrics: We consider four metrics — Accuracy (ACC), calibration error (ECE) (Kumar et al.|
2019) (both marginal and Top-Label) and mean average precision at K (MAP@K) to evaluate the
embedding. For the case of ReLU/pReLU/SELU activation with Cross-Entropy, we use the logistic
regression trained on the train set embeddings, and for QACT we use the calibrated linear classifier, as
proposed above. We do not perform any additional calibration and use the probabilities. We discuss a
selected set of results in the main article. Please see appendix [C|for more comprehensive results.

Calibration error measures the reliability of predicted probabilities. In simple words, if one predicts
100 samples with (say) probability 0.7, then we expect 70 of the samples to belong to class 1 and
the rest to class 0. This is measured using either the marginal or top-label calibration error. We refer
the reader to (Kumar et al.| [2019) for details, which also provides an implementation to estimate the
calibration error.

Remark: For all the baselines we use the standard Cross-Entropy loss for training. For inference
on corrupted datasets, we retrain the last layer with logistic regression on the train embedding and
evaluate it on test/corrupted embedding. For QACT, we as a convention use watershed loss unless
otherwise stated, for training. For inference, we train the Quantile Classifier on the train embedding
and evaluate it on test/corrupted embedding.

The proposed QACT approach is robust to distortions: In fig.] we compare the proposed
QACT approach with predominant existing pipeline — ReLU+Cross-Entropy and DINOv2(small)
on CIFAR10C. In figure a] we see that as the severity of the distortion increases, the accuracy of
ReLU and DINOV2 drops significantly. On the other hand, while at small distortions the results are
comparable, as severity increases QACT performs substantially better than conventional approaches.
At severity 5, QACT outperforms DINOv2. On the other hand, we observe that in figure [Z_T)], the
calibration error stays consistent across distortions.

https://anonymous.4open.science/r/QuantAct-534C
https://anonymous.4open.science/r/QuantAct-534C

Under review as a conference paper at ICLR 2025

Method
008 | g@m Rely
pReLU
007 | —@= selU
u ¢
~& Quant ,

(2 (b) (©

Figure 5: (a) Dependence on Loss functions. Here we compare watershed with other popular
loss functions — Triplet and Cross-Entropy when used with QACT. We see that watershed per-
forms slightly better with respect to MAP. (b) Comparing QACT with other popular activations —
ReLU/pReLU/SELU with respect to accuracy. (¢) Comparing QACT with other popular activations
— ReLU/pReLU/SELU with respect to Calibration Error (Marginal). From both (b) and (c) we can
conclude that QACT is notably more robust across distortions than several of the existing activation.
All the plots use ResNet18 with CIFAR10C dataset.

=8~ CIFAR100-Quant

CIFAR100-ReLU 0.014 =@ CIFAR100-Quant

07 —®~ CIFAR100-DinoV2(s) CIFARL00-ReLU
~@- Tinylmagenet-Quant == CIFAR100-DinoV2(s)

Tinylmagenet-ReLU 0012~ g Tinyimagenet-Quant

B Tinylmagenet-Dinov2(s) Tinyimagenet-ReLU

e
3 0010 W Tinyimagenet-Dinova(s) ,,’ *
-
-
+

=
g
e
5 z
2 04 < 0008 -
H £ -
2 I I e 4
0.3 i = 0.006 P
& ! + -
-
0.2 0.004 * =
w7
0.1 .‘
0.002 ——————=
1 2 3 4 5 1 2 3 4 5
Severity Severity
(@) (b)

Figure 6: Results on CIFAR100C/TinyImagenetC. We compare QAcCT+watershed to ReLU and
DinoV2 small on CIFAR100C/TinyImagenetC dataset with ResNet18. Note that the observations are
consistent with CIFAR10C. (a) shows how accuracy changes across distortions. Observe that QACT
is similar to DINOv2(s) with respect to embedding quality across all distortions, even if DINOv2
has 22M parameters as compared to Resnet18 11M parameters and is trained on larger datasets. (b)
shows how calibration error (marginal) changes across severities. While other approaches lead to an
increase in calibration error, QACT has similar calibration error across distortions.

How much does QACT depend on the loss function? Figure 52 compares the watershed classifier
with other popular losses — Triplet and Cross-Entropy. We see that all the loss functions perform com-
parably when used in conjunction with QACT. We observe that watershed has a slight improvement
when considering MAP and hence, we consider that as the default setting. However, we point out
that QACT is compatible with several loss functions as well.

QACT vs ReLU/pReLU/SELU activations: To verify that most existing activations do not share
the robustness property of QACT, we compare QACT with other activations in figures[5bjand [5c] We
observe that QACT is greatly more robust with respect to distortions in both accuracy and calibration
error than other activation functions.

Results on Larger Datasets: To verify that our observations hold for larger datasets, we use
CIFAR100C/TinyImagenetC to compare the proposed Q ACT+watershed with existing approaches.
We observe on figure [6] that QACT performs comparably well as DINOv2, although DINOv2(s)
has 22M parameters and is trained on significantly larger datasets. Moreover, we also observe that
QACT has approximately constant calibration error across distortions, as opposed to a significantly
increasing calibration error for ReLU or DINOv2.

Under review as a conference paper at ICLR 2025

5 CONCLUSION AND FUTURE WORK

To summarize, traditional classification systems do not consider the “context distributions” when
assigning labels. In this article, we propose a framework to achieve this by — (i) Making the activation
adaptive by using quantiles and (ii) Learning a kernel instead of the boundary for the last layer. We
show that our method is more robust to distortions by considering MNISTC, CIFAR10C, CIFAR100C,
TinyImagenetC datasets across varying architectures.

The scope of this article is to provide a proof of concept and a framework for performing inference in
a context-dependent manner. We outline several potential directions for future research:

I. The key idea in our proposed approach is that the quantiles capture the distribution of each
neuron from the batch of samples, providing outputs accordingly. This poses a challenge for
large datasets, and we have discussed two potential solutions: (i) remember the quantiles
and density estimates for single sample evaluation, or (ii) ensure that a batch of samples
from the same distribution is processed together. We adopt the latter method in this article.
An alternative approach would be to learn the distribution of each neuron using auxiliary
loss functions, adjusting these distributions to fit the domain at test time. This gives us more
control over the network at test time compared to current workflows. If the networks are very
large, where batch sizes cannot be big — there exists several strategies such as checkpointing
to implicitly increase the batch size.

II. Since the aim of the article was to establish a proof-of-concept, we did not focus on scaling,
and use only a single GPU for all the experiments. To extend it to multi-GPU training,
one needs to synchronize the quantiles across GPU, in a similar manner as that for Batch-
Normalization. We expect this to improve the statistics, and to allow considerably larger
batches of training.

III. On the theoretical side, there is an interesting analogy between our quantile activation and
how a biological neuron behaves. It is known that when the inputs to a biological neuron
change, the neuron adapts to these changes (Clifford et al., 2007). Quantile activation does
something very similar, which leads to an open question — can we establish a formal link
between the adaptability of a biological neuron and the accuracy of classification systems?

IV. Another theoretical direction to explore involves considering distributions not just at the
neuron level, but at the layer level, introducing a high-dimensional aspect to the problem.
The main challenge here is defining and utilizing high dimensional quantiles, which remains
an open question (Koenker, [2005)).

REFERENCES

Kei Akuzawa, Yusuke Iwasawa, and Yutaka Matsuo. Adversarial invariant feature learning with
accuracy constraint for domain generalization. In European Conf. Mach. Learning, 2019.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv:1907.02893, 2019.

Aditya Challa, Snehanshu Saha, and Soma Dhavala. Quantprob: Generalizing probabilities along
with predictions for a pre-trained classifier. arXiv:2304.12766, 2023.

Aditya Challa, Sravan Danda, and Laurent Najman. A novel approach to regularising 1nn classifier
for improved generalization. arXiv:2402.08405, 2024.

Colin WG Clifford, Michael A Webster, Garrett B Stanley, Alan A Stocker, Adam Kohn, Tatyana O
Sharpee, and Odelia Schwartz. Visual adaptation: Neural, psychological and computational aspects.
Vision research, 2007.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization
via model-agnostic learning of semantic features. In Neural Inform. Process. Syst., 2019.

Kunihiko Fukushima. Correction to "visual feature extraction by a multilayered network of analog
threshold elements". IEEE Trans. Syst. Sci. Cybern., 1970.

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain generalization
for object recognition with multi-task autoencoders. In Proc. Int. Conf. Comput. Vision, 2015.

10

Under review as a conference paper at ICLR 2025

Zhongyi Han, Guanglin Zhou, Rundong He, Jindong Wang, Tailin Wu, Yilong Yin, Salman H. Khan,
Lina Yao, Tongliang Liu, and Kun Zhang. How well does gpt-4v(ision) adapt to distribution shifts?
A preliminary investigation. arXiv:2312.07424, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proc. Int. Conf. Comput. Vision, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. Conf. Comput. Vision Pattern Recognition, 2016.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In Int. Conf. on Learning Representations, 2019.

Shoubo Hu, Kun Zhang, Zhitang Chen, and Laiwan Chan. Domain generalization via multidomain
discriminant analysis. In Uncertainity in Artificial Intelligence, 2019.

Bincheng Huang, Si Chen, Fan Zhou, Cheng Zhang, and Feng Zhang. Episodic training for domain
generalization using latent domains. In Int. Conf. on Cogni. Systems and Signal Process., 2020.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2261-2269. IEEE Computer Society, 2017.
doi: 10.1109/CVPR.2017.243. URL https://doi.org/10.1109/CVPR.2017.243|

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Neural Inform. Process. Syst., 2017.

Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge University
Press, 2005. doi: 10.1017/CB09780511754098.

Ananya Kumar, Percy Liang, and Tengyu Ma. Verified uncertainty calibration. In Neural Inform.
Process. Syst., 2019.

Zhong Li and Matthijs van Leeuwen. Explainable contextual anomaly detection using quantile
regression forests. Data Min. Knowl. Discov., 2023.

Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision.
arXiv:1906.02337, 2019.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael G.
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision.
arXiv:2304.07193, 2023.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. /IEEE Trans. Knowl. Data Eng.,
2010.

Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Efficient domain generalization via common-
specific low-rank decomposition. In Int. Conf. Mach. Learning, 2020.

Tejas Prashanth, Snehanshu Saha, Sumedh Basarkod, Suraj Aralihalli, Soma S. Dhavala, Sriparna
Saha, and Raviprasad Aduri. Lipgene: Lipschitz continuity guided adaptive learning rates for fast
convergence on microarray expression data sets. IEEE ACM Trans. Comput. Biol. Bioinform.,
2022.

Aditi Seetha, Satyendra Singh Chouhan, Emmanuel S Pilli, Vaskar Raychoudhury, and Snehanshu
Saha. Dievd-sf: Disruptive event detection using continual machine learning with selective
forgetting. IEEE Transactions on Computational Social Systems, 2024.

Hogeon Seo, Seunghyoung Ryu, Jiyeon Yim, Junghoon Seo, and Yonggyun Yu. Quantile autoencoder
for anomaly detection. In AAAIL Workshop on Al for Design and Manufacturing (ADAM), 2022.

11

https://doi.org/10.1109/CVPR.2017.243

Under review as a conference paper at ICLR 2025

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Int. Conf. on Learning Representations, 2015.

Anuj Tambwekar, Anirudh Maiya, Soma S. Dhavala, and Snehanshu Saha. Estimation and applica-
tions of quantiles in deep binary classification. IEEE Trans. Artif. Intell., 2022.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proc. IEEE, 2021.

12

Under review as a conference paper at ICLR 2025

Mean. Avg.Precision

<
X
0.60 St
0.6 Method o Method ~0 N
=8~ Resnet18-RelU 055 —@ Resnetl8-RelU . W
DenseNet-ReLU DenseNet-RelU X
05 M Resnet18-Quant | 050 —M Resnetls-Quant
DenseNet-Quant DenseNet-Quant
=®= DinoV2(s) 045 ~® Dinova(s)
1 2 3 4 5 1 2 3 4 s
Severity Severity
(a) Accuracy (b) Mean Average Precision (MAP@100)
0.08
Method Method
=@= Resnetl8-RelU 0.30 =@- Resnetl8-RelU
0.07 DenseNet-RelU : DenseNet-RelU
=i Resnetl8-Quant =l= Resnetl8-Quant
0.06 DenseNet-Quant ,/ 0.25 DenseNet-Quant ,/
=@~ DinoV2(s) ’ =@~ DinoV2(s) 7,

0.20

Calib.Error(Marginal)

0.15

Calib.Error(Top-Label)

0.10

Severity Severity

(c) Marginal Calibration Error (d) Top-Label Calibration Error

Figure 7: Comparing QACT with ReLU activation and DINOv2 (small).

A EXPERIMENT DETAILS FOR FIGURE 2]

‘We consider the features obtained from ResNet18 with both QACT and ReLLU activations for the
datasets of CIFAR10C with gaussian_noise at all the severity levels. Hence, we have 6 datasets
in total. To use TSNE for visualization, we consider 1000 samples from each dataset and obtain
the combined TSNE visualizations. Each figure shows a scatter plot of the 2d visualization for the
corresponding dataset.

B COMPUTE RESOURCES AND OTHER EXPERIMENTAL DETAILS

All experiments were performed on a single NVidia GPU with 32GB memory with Intel Xeon CPU
(10 cores). For training, we perform an 80:20 split of the train dataset with seed 42 for reproducibility.
All networks are initialized using default pytorch initialization technique.

We use Adam optimizer with initial learning rate le — 3. We use ReduceLRonPlateau learning
rate scheduler with parameters — factor=0.1, patience=50, cooldown=10, threshold=0.01, thresh-
old_mode=abs, min_lr=1e-6. We monitor the validation accuracy for learning rate scheduling. We
also use early_stopping when the validation accuracy does not increase by 0.001.

C EXTENDED RESULTS SECTION

Comparing QACT + watershed and ReLU+Cross-Entropy: Figure[7]shows the corresponding
results. The first experiment compares QACT + watershed with ReLU + Cross-Entropy on two
standard networks — ResNet18 and DenseNet. With respect to accuracy, we observe that while at
severity 0, ReLU + Cross-Entropy slightly outperforms QACT + watershed, as severity increases
QACT + watershed is far more stable. We even outperform DINOv2(small) (22M parameters) at
severity 5. Moreover, with respect to calibration error, we see a consistent trend across distortions.
As (Challa et al.,2023) argues, this helps in building more robust systems compared to one where
calibration error increases across distortions.

13

Under review as a conference paper at ICLR 2025

0.875
Method Method

0.850 —8— Triplet =@~ Triplet
—o~ Watershed - Watershed

0.800 \ 0.75 '\
S D N
- N N\

i

Accuracy
Mean. Avg.Precision

) 0.65

0.700

0.675 0.60

1 2 3 4 5 1 2 3 4
Severity Severity

n

(a) Accuracy (b) Mean Average Precision (MAP@100)

Method
-8~ Triplet
—@~ Watershed
016 Cross-Entropy

0.040

0.038

0.036

0.034

Calib. Error(Marginal)
calib. Error(Top-Label)

0.032
Method
-8~ Triplet

0.030 =@= Watershed
Cross-Entropy

1 2 3 4 5 1 2 3 4 5
severity Severity

(c) Marginal Calibration Error (d) Top-Label Calibration Error

Figure 8: Triplet vs Watershed vs Cross-Entropy

Does loss function make a lot of difference? Figure [§] compares three different loss functions
Watershed, Triplet and Cross-Entropy when used in conjunction with QACT. We observe similar
trends across all loss functions. However, Watershed performs better with respect to Mean Average
Precision (MAP) and hence we use this as a default strategy.

Why Mean-Average-Precision? — We argue that the key indicator of distortion invariance should
be the quality of embedding. While, accuracy (as measured by a linear classifier) is a good metric,
a better one would be to measure the Mean-Average-Precision. With respect to calibration error,
due to the scale on the Y-axis, the figures suggest reducing calibration error. However, the standard
deviations overlap, and hence, these are assumed to be constant across distortions.

How well does watershed perform when used with ReLU activation? Figure [9] shows the
corresponding results. We observe that both the watershed loss and cross-entropy have large overlaps
in the standard deviations at all severity levels. So, this shows that, when used in conjunction with
ReLU watershed and cross-entropy loss are very similar. But in conjunction with QACT, we see that
watershed has a slightly higher Mean-Average-Precision.

What if we consider an easy classification task? In figure[I0] we perform the comparison of
QAcT+Watershed and ReLU and cross-entropy on MNISTC dataset. Across different architectures,
we observe a lot less variation (standard deviation) of QACT+Watershed compared to ReLU and
cross-entropy. This again suggests robustness against distortions of Q ACT+Watershed.

Comparing with other popular activations: Figures[[1]and[12] shows the comparison of QACT
with ReLU, pReLU and SeLU. We observe the same trend across ReLU, pReLLU and SeL.U, while
QACT is far more stable across distortions.

Results on CIFAR100/TinyImagenetC: Figure[T3|compares QACT+Watershed and ReLU+Cross-
Entropy on CIFAR100C dataset. We also include the results of QACT+Cross-Entropy vs.
ReLU+Cross-Entropy on TinyImagenetC. The results are consistent with what we observe on
CIFAR10C, and hence, draw the same conclusions as before.

14

Under review as a conference paper at ICLR 2025

09
Method
=@~ Resnet18-CrossEntropy
=@~ DenseNet-CrossEntropy
0.8 <= Resnet18-Watershed
=@~ DenseNet-Watershed
07
S
Z
c
g
< 06
[
0.4
1 2 3 4 5
Severity
(a) Accuracy
0.09 Method

-8 Resnet18-CrossEntropy
005 ~® DenseNet-CrossEntropy

- Resnet18-Watershed
007 - DenseNet-Watershed

0.85 Method
=@= Resnet18-CrossEntropy
0.80 =@~ DenseNet-CrossEntropy
<~ Resnetl8-Watershed
075 =@~ DenseNet-Watershed
S
s 0.70
S
&
5065
x
5 060
5
H
055
050
045
1 2 3 4 5
Severity

(b) Mean Average Precision (MAP@100)

0.40 Method
8- Resnet18-CrossEntropy
~8- DenseNet-CrossEntropy
B Resnetl8-Watershed
~- DenseNet-Watershed

° °
Iy w
© =

°
i
°

calib.Error(Top-Label)

0.15

0.10

Severity

(d) Top-Label Calibration Error

Figure 9: Watershed vs Cross-Entropy when using ReL.U activation

3
£
2 0.06
s
=
5 0.05
i}
S
= 004
8
0.03
0.02
0.01
1 2 3 4 5
Severity
(c) Marginal Calibration Error
1.0
08
g 06
d
g
< ° o
0.4
Method
EE LeNet o
02 & VGG
B Resnet1s
B Densenet
Quant RelU
Activation
(a) Accuracy
0175 Method
B LeNet
==V ©
0150 mm Resnctis
EEm Densenet ©
50125 5 °
§ o
£ 0100 5
g o
& 0075
3
= o
© 0,050 5
0.025
0.000
Quant ReLU
Activation

(c) Marginal Calibration Error

o
3
o

Mean.Avg.Precision
°
&

05 o
Method o

0.4 EEE LeNet o

VGG
03 EEE Resnetls

BN Densenet o

Quant RelU
Activation

(b) Mean Average Precision (MAP@100)

Method
BN LeNet
08 @ Va6
BN Resnetls
BN Densenet
206
®
5
a
=
2 04
&
El
5
3
0.2
0.0
Quant RelU
Activation

(d) Top-Label Calibration Error

Figure 10: Results on MNIST

Under review as a conference paper at ICLR 2025

Calib.Error(Marginal)

calib.Error(Marginal)

0.08

0.06

0.04

0.02

°
°
@

2
o
<

e
>
@

2
°
@

o
>
4

2
°
w

[8 Method
3 =@ RelU
=®- pRelU
&= selu
=i~ Quant

o 1 2 3 4 5
Severity

(a) Accuracy

Method
=8= RelU
=®- pRelU
-8 SelU
-@- quant

Severity

(c) Marginal Calibration Error

09 & Method
~
5 &= RelU
=& pRelU
08 - Selu
=i~ Quant
c
2
]
i
907
&
g
a
£
3
£ 06
0.5

o 1 2 3 4 5
Severity

(b) Mean Average Precision (MAP@100)

040 Method

=@~ RelU
035 =@ pRelU
- selu
030 =i~ Quant
3
H
2
3 025
Y
£
5 020
I
2
Sois
0.10
0.05
0 1 2 3 4 5
severity

(d) Top-Label Calibration Error

Figure 11: QAcTvs ReLU vs pReLU vs Selu activations on ResNet18

& Method
£ Y =@ RelU
-@- pRelU
8= SelU
=i~ Quant

0 1 2 3 4 5
Severity

(a) Accuracy

Method
-8 RelU
& pRelU
-8 SelU
<8 Quant L/

Severity

(c) Marginal Calibration Error

Method
=@= RelU
0.8 ~®- pRelU
=& SelU
== Quant
5
@ 0.7
g
)
E
S 0.6
§
=
0.5
] 1 2 3 4 5
Severity
(b) Mean Average Precision (MAP@100)
033 Method
-8~ RelU
030 =@ pRelU
-8 SelU /4
i quant ’/’

°
o
@

calib.Error(Top-Label)
° o
i N
o 5

0.10

Severity

(d) Top-Label Calibration Error

Figure 12: QACTvs ReLU vs pReLU vs Selu activations on Densenet

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

=@= CIFAR100-Quant

=@~ CIFAR100-ReLU
0.7 =@~ CIFAR100-DinoV2(s)

8- Tinylmagenet-Quant
= Tinylmagenet-ReLU
-8 Tinylmagenet-DinoV2(s)

=& CIFAR100-Quant
=8~ CIFAR100-RelU
=8~ CIFAR100-DinoV2(s)

045 ~@- Tinylmagenet-Quant
== Tinylmagenet-RelU
0.40 =l Tinylmagenet-DinoV2(s)
5035
L o030
g
z
T 025
5 pX
H
0.20
0.15 m
010 e -4
1 2 3 4 5
Severity

(b) Mean Average Precision (MAP@100)

=8~ CIFAR100-Quant
== CIFAR100-RelU
== CIFAR100-DinoV2(s)
—B- Tinylmagenet-Quant

0.6
== Tinylmagenet-ReLU
-~ Tinylmagenet-DinoV2(s) ———-—
- - -
0.5 + —_ P -
=
- - -
= +» _-- -
2 — -
8 04 - -1 -
& - -
e - - -
§ - _ ” ’/
5 03 - -
& - -
El - -
g ---
0.2
0.1
1 2 3 4 5
Severity

(d) Top-Label Calibration Error

Figure 13: QACTvs ReLU on Resnet18+CIFAR100

0.5
z
C o4
H
B
0.3
0.2
0.1
1 2 3 4 5
Severity
(a) Accuracy
0.014 =@= CIFARL00-Quant
~@- CIFAR100-RelU
=@ CIFARL00-DinoV2(s) —
0012 " _g Tinyimagenet-Quant e
@ Tinylmagenet-ReLU - -
F o010 ||k Tinymagenet-DinoV2(s) g = ’,’
U
£ o
s
= 0.008
e
fis}
8
= 0.006
8
0.004
0.002
1 2 3 4 5
Severity
(c) Marginal Calibration Error
0.9 Method
i =~ ResNet18-CalibCIf
=@ DinoV2(s)-CalibCIf
== ResNet18-LinearCIf
0.8 =@ DinoV2(s)-LinearCIf
=
g
5 0.7
g
E
0.6
0.5
1 2 3 4 5
Severity
(a) Accuracy
0.08
Method
-~ ResNetl8-CalibCIf
0.07

=@~ DinoV2(s)-CalibCIf
= ResNet18-LinearCIf
0.06 =@ DinoV2(s)-LinearClf

T
£
2 0.05
]
z
2 004
o
2
s
G 003

0.02

001

1 2 3 4 5
Severity

(c) Marginal Calibration Error

085 Method
=@ ResNet18-CalibClf
0.80 =@~ DinoV2(s)-CalibCIf
== ResNetl8-LinearCIf
075 —8— DinoV2(s)-LinearCIf

Mean.Avg.Precision
°
&
&

0.60
055
050
1 2 3 4 5
Severity

(b) Mean Average Precision (MAP@100)

Method
030 M- ResNetl8-CalibCIf
=@~ DinoV2(s)-CalibCIf
= ResNet18-LinearClf
025 —@~ Dinov2(s)-LinearClf s
T
&
5
4 0.20
e
g
]
5 015
=
8
0.10
0.05
1 2 3 4 5
Severity

(d) Top-Label Calibration Error

Figure 14: Effect of Quantile Classifier. We use ResNet18 and DinoV2 architectures on CIFAR10.

Under review as a conference paper at ICLR 2025

Method

Severity
(a) Accuracy

0.014 Method
ResNet18-CalibCIf
DinoV2(s)-CalibClf

001z = ResNetlg-LinearCif

=@~ Dinov2(s)-LinearCif

0.010

1 0.008

Calib. Error(Marginal)

0.006

0.004

Severity

(c) Marginal Calibration Error

ResNet18-CalibCIf
Dinov2(s)-CalibCIf

-l ResNet18-LinearCIf
=®= DinoV2(s)-LinearCif

Mean. Avg.Precision
°
G

Severity

Method

ResNet18-CalibClf
DinoV2(s)-CalibClf
=l= ResNet18-LinearCIf
=®= DinoV2(s)-LinearCIf

(b) Mean Average Precision (MAP@100)

0.6

calib.Error(Top-Label)

Method

ResNet18-CalibClf

Din

0V2(s)-CalibCIf

-l ResNetl8-Linearclf

=8 Din

1

0V2(s)-LinearCIf

2

3
Severity

4

(d) Top-Label Calibration Error

Figure 15: Effect of Quantile Classifier. We use ResNet18 and DinoV2 architectures on CIFAR100.

0—1 022 023 024 05 122 123 124 15

Dataset Model/Method
CIFARI10 Resnet18-ReLU 6.70 1157 1727 2482 3549 487 1057 18.12 28.79
DinoV2(s) 6.92 1066 1574 2158 3093 3.74 8.82 14.67 24.02
Resnet18-Quant 4.42 6.88 922 1242 1686 246 4.80 8.00 12.44
CIFAR100 Resnetl8-ReLU 10.25 17.85 2378 29.81 3687 7.59 13.52 19.56 26.62
DinoV2(s) 10.64 1639 22.54 2871 38.02 574 1189 18.06 27.37
Resnet18-Quant 5.83 9.07 1220 1593 21.00 3.24 6.38 10.10 15.17
TinyImagenet Resnet18-ReLU 5.51 958 1490 19.13 2149 4.07 939 13.62 1597
DinoV2(s) 939 1473 2330 3378 4252 534 1391 2439 33.13
Resnet18-Quant 3.27 4.86 726 1043 13.18 1.59 3.99 7.16 9.90

Table 1: Measuring the drop in accuracy

Effect of Quantile Classifier: Figures

[T4]and[T3]

shows the effect of quantile classifier on standard

ResNet10/DinoV2 outputs with CIFAR10C/CIFAR100C datasets. While the accuracy values are
almost equivalent, we observe a “flatter” trend of the calibration errors, sometimes reducing the error
as in the case of CIFAR100C.

Measuring Robustness of QACT: To measure the robustness of the proposed method we use the
metric Acc@Dist_1i - Acc@Dist_j which measures the drop in accuracy when the distortion
severity is increased from 7 — j. A method is considered to be better if the values are lower, i.e
if the drop in accuracy is smaller than comparitive methods. Tables[I]and 2] shows the comparison
between ReLU, QACT and DinoV2(s). We see that, in all the cases QACT outperforms both ReLU
and DinoV2(s) at all possible 7 — j.

18

Under review as a conference paper at ICLR 2025

2—3 24 25 3—=4 355 45

Dataset Model/Method
CIFARI10 Resnet18-ReLU 570 13.25 23.92 7.55 18.22 10.67
DinoV2(s) 5.08 1093 20.28 5.85 15.20 9.35

Resnetl18-Quant 2.34 554 998 320 7.64 445
CIFAR100 ResnetI8-ReLU 593 11.97 19.03 6.04 13.10 7.06
DinoV2(s) 6.15 1232 21.63 6.17 1548 9.3l
Resnetl18-Quant 3.13 6.86 1192 373 879 5.06
TinyImagenet Resnetl8-ReLU 532 955 1190 423 658 235
DinoV2(s) 857 19.05 27.79 1048 1922 874
Resnetl18-Quant 240 556 831 3.17 592 275

Table 2: Measuring the drop in accuracy (contd. from table

D WATERSHED LOSS

The authors in (Challa et al.| 2024) proposed a novel classifier — watershed classifier, which works by
learning similarities instead of the boundaries. Below we give the brief idea of the loss function, and
refer the reader to the original paper for further details.

1. Let (x;,y;) denote the samples in each batch, and let fy denote the embedding network.
fo(x;) denotes the corresponding embedding.

2. Starting from randomly selected seeds in the batch, propagate the labels to all the samples.
Let ¢; denote the estimated samples. For each fy(x;) and for each label [, obtain the nearest
neighbour in the samples in the set,

St ={fo(x:) | i = yi =1} (10

that is, all the samples of class [labelled correctly. Denote this nearest neighbour using

f@(mi,l,lnn)~
3. Then the loss is given by,

1 Tsamples — i) — 1 nn
Watershed Loss = ZI[% = l]log (LGXP(Lokt fuitis x]
Tsamples 7 1] Zj:1 exp (= fo(zi) — fo(@ij,1nn)l)
(11)

Why Watershed Loss?: Observe that the loss in equation |1 1| implicitly learns representations
consistent with the RBF kernel, which is known to be translation invariant. Minimizing this loss
function, hence, will learn translation invariant kernels. This is important for obtaining networks
robust to distortions.

If one uses (say) cross-entropy loss, then the features learned would be such that the classes are
linearly separable. Contrast this with watershed, which instead learns a similarity between two points
in a translation invariant manner.

Remark: Observe that the watershed loss is very similar to metric learning losses. The authors in
(Challa et al., |2024)) claim that this offers better generalization, and show that this is consistent with
INN classifier. Moreover, they show that this classifier (without considering fy) has a VC dimension
which is equal to the number of classes. While metric learning losses are similar, there is no such
guarantee with respect to classification. This motivated our choice of using watershed loss over other
metric learning losses.

19

)

	Introduction
	Quantile Activation
	Training with QAct
	Evaluation
	Conclusion And Future Work
	Experiment details for figure 2
	Compute Resources and Other Experimental Details
	Extended Results Section
	Watershed Loss

